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Solution 9

1. Consider the problem of minimizing f(x, y, z) = (x + 1)2 + y2 + z2 subjecting to the
constraint g(x, y, z) = z2 − x2 − y2 − 1, z > 0. First solve it by eliminating z and then by
Lagrange multipliers.

Solution. Old method. From g = 0 get z2 = x2 + y2 + 1. Plug in f to get h(x, y) =
(x + 1)2 + y2 + x2 + y2 + 1. When (x0, y0, z0) is a local minimizer of f subject to g = 0,
(x0, y0) is a local minimizer of h(x, y). Hence hx = hy = 0 at (x0, y0) which yields

2(x+ 1) + 2x = 0, 2y + 2y = 0 ,

so x = −1/2, y = 0. We conclude that (−1/2, 0,
√

5/2) is a critical point and hence a
candidate for the local minimizer. (With further reasoning, it is really a global minimizer.)

New method, there is some λ such that

x+ 1 = λx, y = λy, z = −λz, z2 − x2 − y2 = 1 .

The fourth equation implies that z is positive, so the third equation yields λ = −1. Then
we get x = −1/2, y = 0 and z =

√
5/2.

Note. Usually we don’t have to check the condition ∇g 6= (0, 0, 0) before applying the
theorem on Lagrange multipliers. You may check it if you like when everything is done.

2. Let f, g1, · · · , gm be C1-functions defined in some open U in Rn+m. Suppose (x0, y0) is
a local extremum of f in {(x, y) ∈ U : g1(x, y) = · · · = gm(x, y) = 0 }. Assuming that
DyG(x0, y0) is invertible where G = (g1, · · · , gm), show that there are λ1, · · · , λm such
that

∇f + λ1∇g + · · ·+ λm∇gm = 0 ,

at (x0, y0).

Solution. Similar to the special case f(x, y, z) over g(x, y, z) = 0. What we need is a state-
ment from linear algebra: Let E be an n-dimensional subspace of Rn+m and u1, · · · , um
are m-many independent vectors perpendicular to E. Then for any w perpendicular
to E, w +

∑m
j=1 λjuj = 0 . Proof: Pick an orthonormal basis of E, v1, · · · , vn. Then

v1, · · · , vn, u1, · · · , um form a basis of Rn+m. So

w + µ1v1 + · · ·+ µnvn + λ1u1 + · · ·+ λmum = 0 .

Taking inner product with vk, we get 0 = w ·vk+µk = µk for all k. Hence w+
∑m

j=1 λjuj =
0 .

3. Solve the IVP for f(t, x) = αt(1+x2), α > 0, t0 = 0, and discuss how the (largest) interval
of existence changes as α and x0 vary.

Solution. The solution is given by

x(t) = tan(tan−1 x0 + αt2/2) ,

where the tangent function is chosen so that tan : (−π/2, π/2) → (−∞,∞). The (maxi-
mal) interval of existence is (−a, a) where

√
a =

1

α
(π − 2 tan−1 x0) .

We see that for fixed α, the interval shrinks as x0 increases, and for fixed x0, it shrinks too
as α increases. The maximal interval of existence depends on f, t0 and x0 in a complicated
manner.
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4. Let f ∈ C(R) where R is a closed rectangle. Suppose x solves x′ = f(t, x) for t ∈ (a, b)
with (t, x(t)) ∈ R. Show that x can be extended to be a solution in [a, b].

Solution. First, since (t, x(t)) remains in R which is bounded, there is {tn}, tn → b− such
that x(tn) → z for some z. We claim in fact x(t) → z as t → b−. For ε > 0, take δ to
satisfy δ < ε/(2M),M = supR |f |. Then for t, b− t < δ, we can find some tn ∈ (t, b) such
that |x(tn)− z| < ε/2. Then

|x(t)− z| ≤ |x(t)− x(tn)|+ |x(tn)− z|

<

∣∣∣∣∫ t

tn

f(s, x(s)) ds

∣∣∣∣+
ε

2

≤ M |tn − t|+
ε

2
≤ ε .

By defining x(b) = z, we see that x(t) is continuous on (a, b]. In the relation

x(t) = x0 +

∫ t

t0

f(s, x(s)) ds, t ∈ (a, b) ,

we can let t → b− to show it remains true in (a, b]. Similarly, we can show the solution
extends to [a, b] too.

5. Let f ∈ C(R) where R is a closed rectangle satisfy a Lipschitz condition in R. Suppose
that x solves x′ = f(t, x) for t ∈ [a, b] where (b, x(b)) lies in the interior of R. Show that
there is some δ > 0 such that x can be extended as a solution in [a, b+ δ].

Solution. Solve the IVP of the equation passing the point (b, x(b)). Since this point lies in
the interior of R, we can find a small rectangle R1 inside R taking this point as the center.
By applying the Picard-Lindelof theorem to R1 we obtain a solution extending beyond b.
By uniqueness it coincides with the old solution in their common interval of existence.

6. Provide a proof to Theorem 3.15 (Picard-Lindelof theorem for systems).

Solution The proof is basically the same as in the equation case. Tutor will do it in class.

7. Let en = (0, · · · , 0, 1, 0, · · · , ) by the sequence with 1 at the n-th place and equal to 0.
Consider the sequence formed by these ej ’s. Show that it has no convergent subsequences
in the space lp, 1 ≤ p ≤ ∞ Recall that lp is the space consisting of all sequences a = {an}
satisfying ‖a‖p = (

∑
n |an|p)1/p <∞ and ‖a‖∞ = supn |an|.

Solution. Suppose on the contrary this sequence has a limit a = {an}. (I have used
bold letters to denote sequences.) Then limn→∞ ‖en − a‖ = 0. From the definition of the
lp-norm it means every component of en − a tends to zero. Since the k-component of en
becomes zero when n > k, the sequence a must be the zero sequence. Therefore, in case
the sequence formed by en’s has a convergent subsequence, it also converges to the zero
sequence in the lp-norm. But this is impossible since limn→∞ ‖enk

− 0‖p = 1.

8. Consider {fn}, fn(x) = x1/n, as a subset F in C[0, 1]. Show that it is closed, bounded, but
has no convergent subsequence in C[0, 1].

Solution. It means F is not precompact. F is bounded as ‖fn‖∞ ≤ 1 for all f ∈ F .
Next, we claim that it has no convergent subsequence. Suppose on the contrary there is
one subsequence {fnj} converges to some g ∈ C[0, 1]. Then, for each x, one must have



2023 Fall Mathematical Analysis III 3

limj→∞ fnj (x) = g(x). However, it is clear that the pointwise limit of fn is the function
f(x) = 1, x ∈ (0, 1] and equals 0 at x = 0. So g must coincide with f , but this is impossible
as g is continuous on [0, 1] but f is discontinuous at x = 0.

We still need to check that F is closed. Let {hn} be a sequence in F converging to some
h ∈ C[0, 1]. Consider two cases. First, this sequence contains infinitely many distinct
functions. Then we can extract a subsequence from it which is also a subsequence of {fn}.
As above we see that this is impossible because h is continuous but f is not. Second, {hn}
contains only finitely many functions. Then one function, say, fn0 , appears infinitely many
times. We can take a subsequence {hnj} consisting of the single fn0 . It must be true that
h = fn0 ∈ F . We conclude that F is a closed set.

9. Prove that {cosnx}∞n=1 does not have any convergent subsequence in C[0, 1].

Solution. By Arzela Theorem it suffices to show that this sequence has no subsequence
that is equicontinuous. Suppose on the contrary, given ε > 0, there exists some δ > 0 such
that

| cosnkx− cosnky| < ε, ∀k ≥ 1, x, y, |x− y| < δ.

Now, take ε = 1 so δ is fixed. Take x = 0 and y = π/n. When n is large |0−π/n| < δ, one
should have | cosn0 − cosnπ/n| < ε = 1. But actually we have | cosn0 − cosnπ/n| = 2,
contradiction holds.

10. Show that any finite set in C(G) is bounded and equicontinuous.

Solution. Recall that any continuous function in G is uniformly continuous. (The proof
is similar to the special case C[a, b].) Now, let the finite set be {f1, · · · , fN}. Since each
fk is uniformly continuous, for ε > 0, there is some δk such that |fk(x) − fk(y)| < ε for
all x, y, |x − y| < δk. If we take δ = min{δ1, · · · , δN}. Then |fk(x) − fk(y)| < ε for
x, y, |x − y| < δ and all k. On the other hand, it is clearly bounded by the maximum of
‖f1‖∞, · · · , ‖fN‖∞.


