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Solution 9

1. Consider the problem of minimizing f(z,y,2) = (z + 1)? + y? + 22 subjecting to the
constraint g(z,y,z) = 22 — 22 —y? — 1, z > 0. First solve it by eliminating z and then by
Lagrange multipliers.

Solution. Old method. From g = 0 get 22 = 22 + 4% + 1. Plug in f to get h(z,y) =
(x 4+ 1)2 +y? + 22 + y?> + 1. When (z0, 50, 20) is a local minimizer of f subject to g = 0,
(20, yo0) is a local minimizer of h(x,y). Hence hy = hy = 0 at (x¢, yo) which yields

2@ +1)+2x=0, 2y+2y=0,
sox = —1/2,y = 0. We conclude that (—1/2,0,/5/2) is a critical point and hence a
candidate for the local minimizer. (With further reasoning, it is really a global minimizer.)

New method, there is some A such that
r+1=Ar, y=Ay, z=—X\z, 22—x2—y2:1.

The fourth equation implies that z is positive, so the third equation yields A = —1. Then
we get = —1/2,y =0 and z = /5/2.

Note. Usually we don’t have to check the condition Vg # (0,0,0) before applying the
theorem on Lagrange multipliers. You may check it if you like when everything is done.

2. Let f,g1, -+ ,gm be C'-functions defined in some open U in R"*™. Suppose (x¢,%0) is

a local extremum of f in {(z,y) € U : ¢i(z,y) = -+ = gm(z,y) = 0 }. Assuming that
DyG(xo,y0) is invertible where G = (g1, ,gm), show that there are Aq,---, A, such
that

Vi+MVg+---+ Vg, =0,
at (o, Yo).
Solution. Similar to the special case f(x,y, z) over g(z,y, z) = 0. What we need is a state-
ment from linear algebra: Let E be an n-dimensional subspace of R and uy,--- , um
are m-many independent vectors perpendicular to E. Then for any w perpendicular
to E, w+ 27:1 Ajuj = 0 . Proof: Pick an orthonormal basis of F, v1,---,v,. Then
V1, ,Up, UL, -+, Uy form a basis of R, So

W+ vy + - fpUp AU A Ay, = 0

Taking inner product with vy, we get 0 = w- v+ ur = g for all k. Hence w+2?i1 Ajuj =
0.

3. Solve the IVP for f(t,x) = at(1+x?),a > 0, to = 0, and discuss how the (largest) interval
of existence changes as a and g vary.

Solution. The solution is given by
z(t) = tan(tan~ ' zg 4+ at?/2) ,

where the tangent function is chosen so that tan : (—7/2,7/2) — (—o00,00). The (maxi-
mal) interval of existence is (—a, a) where

1
Va = a(w —2tan" ! zp) .

We see that for fixed «, the interval shrinks as x( increases, and for fixed g, it shrinks too
as « increases. The maximal interval of existence depends on f,tg and z( in a complicated
manner.
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4. Let f € C(R) where R is a closed rectangle. Suppose z solves ' = f(t,z) for t € (a,b)
with (¢,z(t)) € R. Show that = can be extended to be a solution in [a, b].

Solution. First, since (¢, z(t)) remains in R which is bounded, there is {¢,},t, — b~ such
that x(t,) — z for some z. We claim in fact z(t) — z as t — b~. For € > 0, take J to
satisfy 6 < e/(2M), M = supp |f|. Then for t,b —t < §, we can find some ¢,, € (¢,b) such
that |z(t,) — 2| < &/2. Then

lz(t) — 2| < o) —2(ta)| + |2(tn) — 2|

t f(s,2(s)) ds

N

L€
2

< M|tn—t\+§
< €.

By defining x(b) = z, we see that z(t) is continuous on (a, b]. In the relation
t
a(t)=zo+ [ f(s,2(s))ds, t€(ab),
to

we can let ¢ — b~ to show it remains true in (a,b]. Similarly, we can show the solution
extends to [a, b] too.

5. Let f € C(R) where R is a closed rectangle satisfy a Lipschitz condition in R. Suppose
that x solves 2’ = f(t,z) for t € [a,b] where (b, x(b)) lies in the interior of R. Show that
there is some ¢ > 0 such that z can be extended as a solution in [a,b + d].

Solution. Solve the IVP of the equation passing the point (b, z(b)). Since this point lies in
the interior of R, we can find a small rectangle R; inside R taking this point as the center.
By applying the Picard-Lindelof theorem to R; we obtain a solution extending beyond b.
By uniqueness it coincides with the old solution in their common interval of existence.

6. Provide a proof to Theorem 3.15 (Picard-Lindelof theorem for systems).

Solution The proof is basically the same as in the equation case. Tutor will do it in class.

7. Let e, = (0,---,0,1,0,---,) by the sequence with 1 at the n-th place and equal to 0.
Consider the sequence formed by these e;’s. Show that it has no convergent subsequences
in the space [P, 1 < p < oo Recall that [P is the space consisting of all sequences a = {a,,}
satisfying [lall, = (32, |an|?)/? < o0 and [la]loc = sup, |an|.

Solution. Suppose on the contrary this sequence has a limit a = {a,}. (I have used
bold letters to denote sequences.) Then lim,,_, ||e, — a|| = 0. From the definition of the
[P-norm it means every component of e, — a tends to zero. Since the k-component of e,
becomes zero when n > k, the sequence a must be the zero sequence. Therefore, in case
the sequence formed by e,’s has a convergent subsequence, it also converges to the zero
sequence in the [P-norm. But this is impossible since limy,, o ||€,, — 0|, = 1.

8. Consider {f,}, fn(x) = 2!/, as a subset F in C[0,1]. Show that it is closed, bounded, but
has no convergent subsequence in C]0, 1].

Solution. It means F is not precompact. F is bounded as || fn|locc < 1 for all f € F.
Next, we claim that it has no convergent subsequence. Suppose on the contrary there is
one subsequence {fp;} converges to some g € C[0,1]. Then, for each x, one must have
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10.

limj o0 fn; (z) = g(x). However, it is clear that the pointwise limit of f,, is the function
f(z) =1,z € (0,1] and equals 0 at x = 0. So g must coincide with f, but this is impossible
as g is continuous on [0, 1] but f is discontinuous at x = 0.

We still need to check that F is closed. Let {h,} be a sequence in F converging to some
h € C]0,1]. Consider two cases. First, this sequence contains infinitely many distinct
functions. Then we can extract a subsequence from it which is also a subsequence of { f,, }.
As above we see that this is impossible because h is continuous but f is not. Second, {hy}
contains only finitely many functions. Then one function, say, f,,, appears infinitely many
times. We can take a subsequence {hy;} consisting of the single f,,. It must be true that
h = fn, € F. We conclude that F is a closed set.

. Prove that {cosnz}7° ; does not have any convergent subsequence in C[0, 1].

Solution. By Arzela Theorem it suffices to show that this sequence has no subsequence
that is equicontinuous. Suppose on the contrary, given € > 0, there exists some ¢ > 0 such
that

|cosngx —cosnyy| <e, Vk>1, x,y, |z —y| <6.

Now, take ¢ = 1 so ¢ is fixed. Take x = 0 and y = 7/n. When n is large |0 — 7/n| < 4, one
should have |cosn0 — cosnm/n| < ¢ = 1. But actually we have |cosn0 — cosnrm/n| = 2,
contradiction holds.

Show that any finite set in C'(G) is bounded and equicontinuous.

Solution. Recall that any continuous function in G is uniformly continuous. (The proof
is similar to the special case Cla,b].) Now, let the finite set be {fi,---, fn}. Since each
f is uniformly continuous, for € > 0, there is some J; such that |fx(z) — fx(y)| < € for
all z,y, |z —y| < 0. If we take § = min{dy,---,dn}. Then |fr(z) — fr(y)| < € for
x,y, |xr —y| < ¢ and all k. On the other hand, it is clearly bounded by the maximum of



